publications

Peer Reviewed Publications
119Gerroll, H.R.; Kulesa, K.; Ault, C.A.; Baker, L.A. Legion: An instrument for high-throughput electrochemistry, ACS Measurement Science Au, 2023, in press.
118Alanis, K.; Siwy, Z.: Baker, L.A. Scanning Ion Conductance Microscopy of Nafion-Modified Nanopores J. Electrochem. Soc., 2023, 170, 066510. http://dx.doi.org/10.1149/1945-7111/acdd29
117Jeong, S.; Choi, M.-H.; Jagdale, G.; Zhong, Y.; Siepser, N.P.; Wang, Y.; Baker, L.A.; Ye, X. Unraveling Structural Sensitivity of CO2 electroreduction at Facet-Defined Nanocrystals via Correlative Single-Entity and Macroelectrode Measurements, J. Am. Chem. Soc., 2022, 144, 12673-12680. (https://doi.org/10.1021/jacs.2c02001)
116Gerroll, B.H.R.; Lewis, J.C.; Baker, L.A.; Cobalamin-Mediated Electrocatalytic Reduction of Ethyl Chloroacetate in Dimethylformamide, J. Electrochem. Soc., 2022, 169, 055501. (https://dx.doi.org/10.1149/1945-7111/ac6a13)
115McKenzie, E.; Hosseini, A.; Couto Petro, A.G.; Gerroll, B.H.R.; Rudman, K.; Baker, L.A.; Little, R.D. Versatile Tools for Understanding Synthetic Mechanisms, Chem. Rev., 2022, 122, 3292-3335. (https://doi.org/10.1021/acs.chemrev.1c00471)
114Yang, X; Gerroll, B.H.R.; Jiang, Y.; Kumar, A; Zubi, Y.S.; Baker, L.A.; Lewis, J.C. Controlling Non-Native B12 Reactivity and Catalysis in the Transcription Factor CarH, ACS Catal., 2022, 12, 935-942. (https://doi.org/10.1021/acscatal.1c04748)
113Friedman, A.K.; Boeynaems, S.; Baker, L.A. Synthetic hydrogel mimics of the nuclear pore complex for the study of nucleocytoplasmic transport defects in C9orf72 ALS/FTD, Anal. Bioanal. Chem., 2022, 414, 525-532. (https://dx.doi.org/10.1007/s00216-021-03478-2)
112Siepser, N.P.; Choi, M.; Alden, S.E.; Baker, L.A. Single-Entity Electrocatalysis at Electrode Ensembles Prepared by Template Synthesis, J. Electrochem. Soc., 2021, 168, 126526. (http://dx.doi.org/10.1149/1945-7111/ac44b8)
111Jagdale, G.; Choi, M.; Siepser, N.P.; Jeong, S.; Wang, Y.; Skalla, R.; Huang, K.; Ye, X.; Baker, L.A. Electrospray Deposition for Single-Nanoparticle Studies, Anal. Meth., 2021, 13, 4105-4113. (https://doi.org/10.1039/D1AY01295A)
110Ghatak, S.; Khona, D.K.; Sen, A.; Huang, K.; Jagdale, G.; Singh, K.; Gopalakrishnan, V.; Cornetta, K.G.; Roy, S.; Khanna, S.; Baker, L.A.; Sen, C.K. Electroceutical Fabric Lowers Zeta Potential and Eradicates Coronavirus Infectivity upon Contact, Sci. Rep., 2021, 11, 21723. (https://doi.org/10.1038/s41598-021-00910-6)
109Zhu, C.; Jagdale, G.; Gandolfo, A.; Abney, R.; Zhou, L.; Bish, D.; Raff, J.D.; Baker, L.A. Surface Charge Measurements with Scanning Ion Conductance Microscopy Provides Insights into Nitrous Acid Speciation at the Kaolin Mineral-Air Interface, Enviro. Sci. Tech., 2021, 55, 12233-12242. (https://doi.org/10.1021/acs.est.1c03455)
108Huang, K.; Castiaux, A.; Podicheti, R.; Rusch, D.B.; Martin, R.S.; Baker, L.A. A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood-brain Barrier Model, Small Methods, 2021, 2100592. (https://doi.org/10.1002/smtd.202100592)
107Khona, D.K.; Roy, S.; Ghatak, S.; Huang, K; Jagdale, G.; Baker, L.A.; Sen, C.K. Ketoconazole Resistant Candida albicans is Sensitive to a Wireless Electroceutical Wound Care Dressing, Bioelectrochem., 2021, 142, 107921. (https://doi.org/10.1016/j.bioelechem.2021.107921)
106Couto Petro, A.G.; Scherschel, N.F.; Baker, L.A. Electroreduction of Acetochlor at Silver Cathodes in Aqueous Media, J. Electrochem. Soc. 2021, 168, 075502. (https://doi.org/10.1149/1945-7111/ac13d6)
105Choi, M.; Siepser, N.P.; Jeong, S.; Ye, X.; Baker, L.A. Characterization of Ligand Adsorption at Individual Gold Nanocubes, Langmuir 2021, 37, 7701-7711. (https://doi.org/10.1021/acs.langmuir.1c00694)
104Zhu, C.; Huang, K.; Wang, Y.; Alanis, K.; Shi, W.; Baker, L.A. Imaging with Ion Channels, Anal. Chem., 2021, 93, 5355-5359. (https://doi.org/10.1021/acs.analchem.1c00224)
103Zhu, C.; Huang, K.; Siepser, N.P.; Baker, L.A. Scanning Ion Conductance Microscopy (SICM) Chem. Rev., 2021, 232, 11726-11768. (https://doi.org/10.1021/acs.chemrev.0c00962)
102Couto Petro, A.G.; Thapa, B.; Karty, J.A.; Raghavachari, K.; Baker, L.A.; Peters, D.G. Direct Electrochemical Reduction of Acetochlor at Carbon and Silver Cathodes in Dimethylformamide, J. Electrochem. Soc., 2020, 167, 155517. (https://dx.doi.org/10.1149/1945-7111/abb8f9)
101101. Lucas, R.A.; Lin, C.; Baker, L.A.; Siwy, Z.S. Ionic Amplifying Circuits Inspired by Electronics and Biology, Nat. Commun., 2020, 11, 1568. (https://dx.doi.org/10.1038/S41467-020-15398-3)
100Choi, M.; Siepser, N.P.; Jeong, S.; Wang, Y.; Jagdale, G.; Ye, X.; Baker, L.A. Probing Single-Particle Electrocatalytic Activity at Facet-Controlled Gold Nanocrystals, Nanoletters, 2020, 20, 1233-1239. (https://dx.doi.org/10.1021/acs.nanolett.9b04640)
99Panczyk, E.M.; Gilbert, J.D.; Jagdale, G.S.; Stiving, A.Q.; Baker, L.A.; Wysocki, V.H. Ion Mobility and Surface Collisions Show that Submicron Capillaries Can Produce Native-like Protein Complexes, Anal. Chem., 2020, 92, 2460-2467. (http://dx.doi.org/10.1021/acs.analchem.9b03666)
98Alden, S.E.; Siepser, N.P.; Patterson, J.A.; Jagdale, G.S.; Choi, M.; Baker, L.A. Array Microcell Method (AMCM) for Serial Electroanalysis, ChemElectroChem, 2020, 7, 1084-1091. (https://doi.org/10.1002/celc.201901976)
97Huang, K.; Zhou, L.; Alanis, K.; Hou, J.; Baker, L.A. Imaging effects of hyperosmolality on individual tricellular junctions, Chem. Sci., 2020, 11, 1307-1315. (http://dx.doi.org/10.1039/C9SC05114G)
96Baker, L.A.; Jagdale, G. On the Interface of Electrochemistry and Mass Spectrometry, Curr. Opinion. Electrochem., 2019, 13, 140-146. (https://doi.org/10.1016/j.coelec.2018.12.001)
95Baker, L.A. A Perspective and Prospectus on Single Entity Electrochemistry, J. Am. Chem. Soc., 2018, 140, 15549-15559. (https://dx.doi.org/ 10.1021/jacs.8b09747)
94Choi, M.; Baker, L.A. Biphasic Scanning Ion Conductance Microscopy, Anal. Chem., 2018, 90I, 11797-11801. (https://dx.doi.org/ 10.1021/acs.analchem.8b03660)
93Zhu, C.; Zhou, L.; Baker, L.A. Mapping Surface Charge of Individual Microdomains with Scanning Ion Conductance Microscopy, ChemElectroChem, 2018, 5, 2986-2990. (https://doi.org/10.1002/celc.201800724)
92Friedman, A.K.; Shi, W.; Losovyj, Y.; Siedle, A.R.; Baker, L.A. Mapping Chemical Heterogeneity in Nafion Membranes with X-ray photoelectron spectroscopy, J. Electro. Chem. Soc., 2018, 165, H733-H741. (http://dx.doi.org/10.1149/2.0771811jes)
91Martinez, J.; Ashby, D.; Zhu, C.; Dunn, B.; Baker, L.A.; Siwy, Z.S. Probing Ion Current in Solid-Electrolytes at the Meso- and Nanoscale, Faraday Discussions, 2018, 210, 55-67. (http://dx.doi.org/10.1039/C8FD00071A)
90Yuill, E.M.; Baker, L.A. Ion concentration in micro and nanoscale electrospray emitters, Anal. Bioanal. Chem., 2018, 410, 3639-3648. (http://dx.doi.org/10.1007/s00216-018-1043-5)
89Zhu, C.; Shi, W.; Daleke, D. L.; Baker, L. A. Monitoring Dynamic Spiculation in Red Blood Cells with Scanning Ion Conductance Microscopy, Analyst, 2018, 143, 1087-93. (http://dx.doi.org/10.1039/C7AN01986F)
88Yarger, T.J.; Yuill, E.M.; Baker, L.A. Probe-Substrate Distance Control in Desorption Electrospray Ionization, J. Am. Soc. Mass Spectrom., 2018, 29, 558-565. (http://dx.doi.org/10.1007/s13361-017-1844-3)
87Shi, W.; Zeng, Y.; Zhu, C.; Xiao, Y.; Cummins, T.R.; Hou, J.; Baker, L.A. Characterization of Membrane Patch-Ion Channel Probes for Scanning Ion Conductance Microscopy, Small, 2017, 1702945. (http://dx.doi.org/10.1002/smll.201702945)
86Zhou, L., Gong, Y.; Hou, J.; Baker, L. A. Quantitative Visualization of Nanoscale Ion Transport, Anal. Chem., 2017, 89, 13603-13609. (http://dx.doi.org/10.1021/acs.analchem.7b04139)
85Coceancigh, H.; Tran-Ba, K.; Siepser, N.; Baker, L. A.; Ito, T. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using Electrochemically-Assisted Cu(I)–Catalyzed Click Reaction, Langmuir, 2017, 33, 11998-12006. (http://dx.doi.org/10.1021/acs.langmuir.7b02778)
84Shi, W.; Friedman, A.K.; Baker, L.A. Nanopore Sensing, Anal. Chem., 2017, 89, 157-188. (http://dx.doi.org/10.1021/acs.analchem.6b04260)
83Yuill, E.M.; Baker, L.A. Electrochemical Aspects of Mass Spectrometry: Atmospheric Pressure Ionization and Ambient Ionization for Bioanalysis, ChemElectroChem, 2017, 4, 806-812. (http://dx.doi.org/10.1002/celc.201600751)
82Friedman, A.K.; Baker, L.A. Synthetic Hydrogel Mimics of the Nuclear Pore Complex Display Selectivity Dependent on FG-Repeat Concentration and Electrostatics, Soft Materials, 2016, 12, 9477-9484. (http://dx.doi.org/10.1039/C6SM01689H)
81Shi, W.; Zhou, L.; Zheng, Y.; Xiao, Y.; Cummins, T.R.; Baker, L.A. Membrane Patches as Ion Channel Probes for Scanning Ion Conductance Microscopy, Faraday Discussions, 2016, 193, 81-97. (http://dx.doi.org/10.1039/C6FD00133E)
80Zhang, X.; Wang, H.; Morris, C.A.; Gu, C.; Li, M.; Baker, L.A.; Shao, Y. Probing Electron Transfer and Ion Transfer Coupling Processes at the Liquid/Liquid Interface by Pipette Electrodes, ChemElectroChem, 2016, 3, 2153-2159. (http://dx.doi.org/10.1002/celc.201600234)
79Zhou, L.; Gong, Y.; Sunq, A.; Hou, J.; Baker, L.A. Capturing Rare Conductance in Epithelia with Potentiometric-Scanning Ion Conductance Microscopy (P-SICM), Anal. Chem., 2016, 88, 9630–9637. (http://dx.doi.org/10.1021/acs.analchem.6b02392)
78Sa, N.; Pan, B.; Saha-Shah, A.; Hubaud, A.A.; Vaughey, J.T.; Baker, L.A.; Liao, C.; Burrel, A.K. Role of Chloride for a Simple, Non-Grignard Mg Electrolyte in Ether Based Solvents, ACS Appl. Mat. Interfaces, 2016, 8, 16002-16008. (http://dx.doi.org/10.1021/acsami.6b03193)
77Saha-Shah, A.; Green, C.M.; Abraham, D.H.; Baker, L.A. Segmented flow sampling with push-pull theta pipettes, Analyst, 2016, 141, 1958-1965. (http://dx.doi.org/10.1080/21688370.2016.1142492)
76Yuill, E.M.; Shi, W.; Baker, L.A. Scanning electrospray microscopy with nanopipettes, Anal. Chem., 2015, 87, 11182–86. (http://dx.doi.org/10.1021/acs.analchem.5b03399)
75Shi, W.; Baker, L. A. Imaging studies chemical degradation of Nafion membranes. RSC Adv., 2015, 5, 99284-90. (http://dx.doi.org/10.1039/C5RA20291D)
74Plett, T.; Shi, W.; Zeng, Y.; Mann, W.; Vlassiouk, I.; Baker, L.A.; Siwy, Z.S. Rectification of nanopores in aprotic solvents – Transport properties of nanopores with surface dipoles. Nanoscale, 2015, 7, 19080-91. (http://dx.doi.org/10.1039/C5NR06340J)
73Hou, J.; Zhou, L.; Zheng, Y.; Baker, L.A. A model for differentiating transcellular and paracellular conductances with double patch-clamps and scanning ion conductance microscopy. Tissue Barriers, 2015, 3, e1105907. (http://dx.doi.org/10.1080/21688370.2015.1105907)
72Gong, Y.; Zhou, Y. Baker, L.A.; Hou, J. Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization, Mol. Bio. Cell, 2015, 26, 4333-4346. (http://dx.doi.org/10.1091/mbc.E15-06-0422)
71Govinda, G.; Yi, Y.; Derylo, M.A.; Baker, L.A.; Ito, T. Electron Propagation within Redox-Active Microdomains in Thin Films of Ferrocene-Containing Diblock Copolymers. Langmuir, 2015, 31, 12307–14. (http://dx.doi.org/10.1021/acs.langmuir.5b02996)
70Zhou, L.; Zhou, Y.; Shi, W.; Baker, L.A. Alternating Current Potentiometric Scanning Ion Conductance Microscopy (AC-PSICM). J. Phys. Chem. C, 2015, 119, 14392-14399. (http://dx.doi.org/10.1021/acs.jpcc.5b03120)
69Shi, W.; Sa, N.; Thakar, R.; Baker, L.A. Nanopipette Delivery: Influence of Surface Charge. Analyst2015140, 4835-4842. (http://dx.doi.org/10.1039/C4AN01073F)
68Saha-Shah, A.; Weber, A.E.; Karty, J. A.; Ray, S. J.; Hieftje, G. M.; Baker, L. A. Nanopipettes: probes for local sample analysis. Chem. Sci., 2015, 6, 3334-41. (http://dx.doi.org/10.1039/C5SC00668F)
67Zakeri, R.; Basore, J.R.; Baker, L.A. Modulated Fluorescence Detection with Microelectromagnetic Traps. Anal. Meth., 2015, 7, 2273-77. (http://dx.doi.org/10.1039/C4AY02828G)
66Haywood, D.G.; Saha-Shah, A.; Baker, L.A.; Jacobson, S.C. Fundamentals of Nanofluidics: Nanopores, Nanochannels and Nanopipets. Anal. Chem., 201587, 172-187. (http://dx.doi.org/10.1021/ac504180h)
65Zhou, Y.; Bright, L.; Shi, W.; Aspinwall, C.A.; Baker, L.A. Ion channel probes for scanning ion conductance microscopy. Langmuir201430, 15351-15355. (http://dx.doi.org/10.1021/la504097f)
64Baker, L.A.; Chakraverty, D.; Columbus, L.; Feig, A.; Jenks, W.; Pilarz, M.; Stains, M.; Waterman, R.; Wesemann, J. Cottrell Scholars Collaborative New Faculty Workshop: Professional Development for New Chemistry Faculty and Initial Assessment of its Efficacy. J. Chem. Ed., 2014, 91, 1874-1881. (http://dx.doi.org/10.1021/ed500547n)
63Weber, A.E.; Baker, L.A. Experimental studies of resolution in scanning ion conductance microscopy. J. Electrochem. Soc., 2014, 161, H924-H929. (http://dx.doi.org/10.1149/2.0701414jes)
62Zhou, Y.; Chen, C.C.; Weber, A.E.; Zhou, L.; Baker, L.A. Potentiometric Scanning Ion Conductance MicroscopyLangmuir201430, 5669-5675. (http://dx.doi.org/10.1021/la500911w)
61Morton, K.C.; Baker, L.A. Atomic Force Microscopy-based Bioanalysis for the Study of Disease. Anal. Meth.2014, 6, 4932-4955. (http://dx.doi.org/10.1039/C4AY00485J)
60Laracuente, A.; Baker, L.A.; Whitman. L.J. Copper silicide nanocrystals on hydrogen-terminated Si(001). Surf. Sci.2014624, 52-57. (http://dx.doi.org/10.1016/j.susc.2013.12.006)
59Sa, N.; Lan, W.; Shi, W.; Baker, L.A. Rectification of Ion Current in Nanopipettes by External Substrates. ACS Nano2013, 7, 11272–11282. (http://dx.doi.org/10.1021/nn4050485)
58Morton, K.C.; Tokuhisa, H.; Baker, L.A. Pyrolyzed Carbon Film Diodes. ACS Appl. Mater. Interfaces20135, 10673–10681. (http://dx.doi.org/10.1021/am402758y)
57Yuill, E.M.; Sa. N.; Ray, S.J.; Hieftje, G.M.; Baker, L.A. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nanometers. Anal. Chem., 2013, 85, 8498–8502. (http://dx.doi.org/10.1021/ac402214g)
56Thakar, R.; Weber, A.E.; Morris, C.A.; Baker, L. A. Multifunctional Carbon Nanoelectrodes Fabricated by Focused Ion Beam Milling. Analyst, 2013, 138, 5973-5982. (http://dx.doi.org/10.1039/c3an01216f)
55Zhou, Y.; Chen, C.C.; Weber, A.; Zhou, L.; Baker, L. A.; Hou, J. Potentiometric-Scanning Ion Conductance Microscopy for Measurement at Tight Junctions. Tissue Barriers, 2013, 1, e2558s. (https://www.landesbioscience.com/journals/tissuebarriers/article/25585/).
54Morris, C.A.; Chen, C.; Ito, T.; Baker, L. A. Local pH Measurement with Scanning Ion Conductance Microscopy. J. Electrochem. Soc., 2013160, H430-H435. (http://dx.doi.org/10.1149/2.028308jes)
53Sa, N.; Baker, L.A. Experiment and Simulation of Ion Transport through Nanopipettes of Well-defined Conical Geometry. J. Electrochem. Soc., 2013, 160, H376-H381. (http://dx.doi.org/10.1149/2.128306jes)
52Chen, C.; Zhou, Y.; Morris, C.A.; Hou, J.; Baker, L.A. Scanning ion conductance microscopy measurement of paracellular conductance in tight junctions. Anal. Chem., 2013, 85, 3621-3628. (http://dx.doi.org/10.1021/ac303441n)
51Mathews, K.L.; Budgin, A.M.; Beeram, S.; Joenathan, A.T.; Stein, B.D.; Werner-Zwanziger, U.; Pink, M.; Baker, L.A.; Malumoud, W.E.; Carini, J.P.; Bronstein, L.M. Solid Polymer Electrolytes which Contain Tricoordinate Boron for Enhanced Conductivity and Transference Numbers. J. Mat. Chem. A, 2013, 1, 1108-1116. (http://dx.doi.org/10.1039/C2TA00628F)
50Thakar, R.; Zakeri, R.; Morris, C.A.; Baker, L.A. Rapid Fabrication of Nanoporous Membrane Arrays and Single-pore Membranes from Parylene C. Anal. Meth.20124, 4353-4359 (http://dx.doi.org/10.1039/C2AY26074C)
49Morton, K.C.; Derylo, M.A.; Baker, L.A. Conductive Atomic Force Microscopy Probes from Pyrolyzed Parylene C. J. Electrochem. Soc., 2012, H662-H667. (http://dx.doi.org/10.1149/2.061207jes)
48Basore, J.; Baker, L. A., Applications of Microelectromagnetic Traps. Anal. Bioanal. Chem.2012403, 2077-2088. (http://dx.doi.org/10.1007/s00216-012-6040-5)
47Chen, C.; Zhou, Y.; Baker, L.A. Scanning Ion Conductance Microscopy. Annu. Rev. Anal. Chem., 2012, 5, 207-228. (http://dx.doi.org/10.1146/annurev-anchem-062011-143203)
46Zhou, Y.; Chen, C.; Baker, L. A., Heterogeneity of Multiple-pore Membranes Investigated with Ion Conductance Microscopy. Anal. Chem.201284, 3003-3009. (http://dx.doi.org/10.1021/ac300257q)
45Morris, C.A.; Chen, C.; Baker, L.A. Transport of Redox Probes through Single Pores Measured by Scanning Electrochemical-Scanning Ion Conductance Microscopy (SECM-SICM). Analyst, 2012, 137, 2933-2938. (http:// dx.doi.org/10.1039/C2AN16178H)
44Basore, J.R.; Lavrik, N.V.; Baker, L.A. Magnetically Gated Microelectrodes. Chem. Comm., 2012, 48, 1009-1011. (http://dx.doi.org/10.1039/C2CC16938J)
43Chen, C.; Zhou, Y.; Baker, L.A. Single nanopore investigations with ion conductance microscopy. ACS Nano, 2011, 5, 8404-8411. (http://dx.doi.org/10.1021/nn203205s)
42Derylo, M.A.; Morton, K.C.; Baker, L.A. Parylene insulated probes for electrochemical atomic force microscopy. Langmuir, 2011, 27, 13925-13930. (http://dx.doi.org/10.1021/la203032u)
41Bird, S.P; Baker, L.A. An abiotic analogue of the nuclear pore complex hydrogel. Biomacromol., 2011, 12, 3119-3123 (http://dx.doi.org/10.1021/bm200820x).
40Sa, N.; Baker, L.A. Rectification of nanopores at surfaces. J. Am. Chem. Soc., 2011, 133, 10398-10401. (http://dx.doi.org/10.1021/ja203883q)
39Morton, K. C.; Morris, C. A.; Derylo, M. A.; Thakar, R.; Baker, L. A. Carbon electrode fabrication from pyrolyzed parylene c. Anal. Chem., 2011, 83, 5447-5452. (http://dx.doi.org/10.1021/ac200885w)
38Thakar, R.; Wilburn, J.; Baker, L. A. Studies of edge effects with shroud-modified electrodes. Electroanalysis, 2011, 23, 1543-1547. (http://dx.doi.org/10.1002/elan.201100170)
37Bird, S. P.; Baker, L. A. Biologically modified hydrogels for chemical and biochemical analysis. Analyst, 2011, 136, 3410-3418. (http://dx.doi.org/10.1039/C0AN00871K)
36Powell, M.; Sa, N.; Davenport, M.; Healy, K.; Vlassiouk, I.; Letant, S.; Baker, L. A.; Siwy, Z. Noise Properties of Rectifying Nanopores. J. Phys. Chem. C., 2011, 115, 8775-8783. (http://dx.doi.org 10.1021/jp2016038)
35Chen, C., Baker, L.A. Effects of pipette modulation and imaging distances on ion currents measured with Scanning Ion Conductance Microscopy (SICM). Analyst, 2011, 1, 90-97. (http://dx.doi.org/10.1039/C0AN00604A)
34Sa. N.; Fu, Y.; Baker, L. A. Reversible cobalt ion binding to imidazole-modified nanopipettes. Anal. Chem., 2010, 82, 9963-9966. (http://dx.doi.org/10.1021/ac102619j)
33Basore, J. R.; Lavrik, N. V.; Baker, L. A. Electromagnetic Micropores: Fabrication and Operation. Langmuir, 2010, 26, 19239-1244. (http://dx.doi.org/10.1021/la103977e)
32Morris, C.; Friedman, A. K.; Baker, L. A. Applications of Nanopipettes in the Analytical Sciences. Analyst, 2010, 135, 2190-2202. (http://dx.doi.org/10.1039/c0an00156b)
31Thakar, R.; Baker, L. A. Lithography-free Production of Stamps for Microcontact Printing. Anal. Meth., 2010, 2, 1180-1183. (http://dx.doi.org/10.1039/c0ay00233j)
30Basore, J. R.; Lavrik, N. V.; Baker, L. A.; Single-Pore membranes Gated by Microelectromagnetic Traps. Adv. Mat., 2010, 2759-2763. (http://dx.doi.org/10.1002/adma.201000566)
29Petrovykh, D.; Sullivan, J.; Clark, T.; Baker, L. A.; Whitman, L. J. Self-Assembled Monolayers of Alkanethiols on InAs. Langmuir, 2009, 25, 12185-12194. (http:// dx.doi.org/10.1021/la804314j)
28Fu, Y.; Tokuhisa, H.; Baker, L. A. Nanopore DNA sensors based on dendrimer-modified nanopipettes. Chem. Comm., 2009, 32, 4877-4879. (http://dx.doi.org/10.1039/b910511e)
27Chen, C.; Derylo, M.; Baker, L. A. Measurement of Ion Currents through Porous Membranes with Scanning Ion Conductance Microscopy. Anal. Chem., 2009, 81, 4742-4751. (http://dx.doi.org/10.1021/ac900065p)
26Burgan, D. A.; Baker, L. A. Investigating Self-Assembly with Macaroni. J. Chem. Ed., 2009, 86, 704A. (http://dx.doi.org/10.1021/ed086p704A)
25Tokuhisa, H.; Liu, J.; Omori, K.; Kanesato, M.; Baker, L. A. Efficient Biosensor Interfaces Based on Space-Controlled Self-Assembled Monolayers. Langmuir, 2009, 25, 1633-1637. (http://dx.doi.org/10.1021/la8033148)
24Laracuente, A. R.; Baker, L. A.; Whitman, L. J. UHV Characterization of Ambient-Dosed Hydrogen-Terminated Si(001). Surf. Sci., 2008, 602, 3-8. (http://dx.doi.org/10.1016/j.susc.2007.09.032)
23Sexton, L. T.; Horne, L. P. Sherrill, S. S.; Bishop, G. W.; Baker, L. A.; Martin, C. R. Resistive-Pulse Studies of Proteins and Protein/Antibody Complexes Using a Conical Nanotube Sensor. J. Am. Chem. Soc., 2007, 129, 13144-13152. (http://dx.doi.org/10.1021/ja0739943)
22Harrell, C. C.; Choi, Y.; Baker, L. A.; Siwy, Z.; Martin, C. R. Resistive-Pulse DNA Detection with a Conical Nanopore Sensor. Langmuir, 2006, 22, 10837-10843. (http://dx.doi.org/10.1021/la061234k)
21Choi, Y.; Baker, L. A.; Hillebrenner, H.; Martin, C. R. Biosensing with conically shaped nanopores and nanotubes. Phys. Chem. Chem. Phys., 2006, 8, 4976-4988. (http://dx.doi.org/10.1039/b607360c)
20Ervin, E. N.; White, H. S.; Baker, L. A.; Martin, C. R. Alternating Current Impedance Imaging of High-Resistance Membrane Pores Using a Scanning Electrochemical Microscope. Application of Membrane Electrical Shunts to Increase Measurement Sensitivity and Image Contrast. Anal. Chem., 2006, 78, 6535-6541. (http://dx.doi.org/10.1021/ac060577k)
19Scopece, P.; Baker, L. A.; Ugo, P.; Martin, C. R. Conical Nanopores: Solvent Shaping of Nanopores. Nanotechnology, 2006, 3951-3956. (http://dx.doi.org/10.1088/0957-4484/17/15/057)
18Baker, L. A.; Choi, Y.; Martin, C. R. Nanotube Membranes for Biomaterials Synthesis, Bioseparations, and Biosensors. Current Nanoscience, 2006, 2, 243-255. (http://www.ingentaconnect.com/content/ben/cnano/2006/00000002/00000003/art00009)
17Heins, E. S.; Baker, L. A.; Siwy, Z. S.; Mota, M. O.; Martin, C. R. Effect of Crown Ether on Ion Currents through Synthetic Membranes Containing a Single Conically Shaped Nanopore. J. Phys. Chem. B, 2005, 109, 18400-18407. (http://dx.doi.org/10.1021/jp052341a)
16Odom, D. J.; Baker, L. A.; Martin, C. R. Solvent-Extraction and Langmuir-Adsorption-Based Transport in Chemically Functionalized Nanopore Membranes. J. Phys. Chem. B, 2005, 109, 20877-20894. (http://dx.doi.org/10.1021/jp0524983)
15Heins, E. S.; Siwy, Z. S.; Baker, L. A.; Martin, C. R. Detecting Single Porphyrin Molecules in a Conically Shaped Synthetic Nanopore. Nano Lett., 2005, 5, 1824-1829. (http://dx.doi.org/10.1021/nl050925i)
14Ervin, E. N.; White, H. S.; Baker, L. A. Alternating Current Impedance Imaging of Membranes Pores Using Scanning Electrochemical Microscopy. Anal. Chem., 2005, 77, 5564-5569. (http://dx.doi.org/10.1021/ac050453s)
13Baker, L. A.; Jin, P.; Martin, C. R. Biomaterials and Biotechnologies Based on Nanotube Membranes. Crit. Rev. Solid State Mater. Sci., 2005, 30, 1-22. (http://dx.doi.org/10.1080/10408430500198169)
12Baker, L. A.; Laracuente, A. R.; Whitman, L. J. Hydrogen Termination Following Cu Deposition on Si(001). Phys. Rev. B, 2005, 71, 153302. (http://dx.doi.org/10.1103/PhysRevB.71.153302)
11Siwy, Z.; Trofin, L.; Kohli, P.; Baker, L. A.; Trautmann, C.; Martin, C. R. Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. J. Am. Chem. Soc., 2005, 127, 5000-5001. (http://dx.doi.org//10.1021/ja043910f)
10Kooi, S. E.; Baker, L. A.; Sheehan, P. E.; Whitman, L. J. Dip-Pen Nanolithography of Chemical Templates on Silicon Oxide. Adv. Mater., 2004, 16, 1013-1016. (http://dx.doi.org//10.1002/adma.200306468)
9Oh, S. –K.; Baker, L. A.; Crooks, R. M. Electrochemical Rectification Using Mixed Monolayers of Redox-Active Ferrocenyl Dendrimers and n-Alkanethiols. Langmuir, 2002, 18, 6981-6987. (http://dx.doi.org/10.1021/la020382h)
8Baker, L. A.; Sun, L.; Crooks, R. M. Synthesis and Catalytic Properties of Imidazole-Functionalized Poly(propylene imine) Dendrimers. Bull. Kor. Chem. Soc., 2002, 23, 647-654 (invited feature article). (http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JCGMCS_2002_v23n5_647)
7Baker, L. A.; Crooks, R. M. Photophysical Properties of Pyrene-Functionalized Poly (Propylene Imine) Dendrimers. Macromolecules, 2000, 33, 9034-9039. (http://dx.doi.org/10.1021/ma001379c)
6Baker, L. A.; Zamborini, F. P.; Sun, L.; Crooks, R. M. Dendrimer-Mediated Adhesion between Vapor-Deposited Gold and Glass or Si Wafers. Anal. Chem., 1999, 71, 4403-4406. (http://dx.doi.org/10.1021/ac990495e)
5Smith, D. D.; Yoon, Y.; Boyd, R. W.; Campbell, J. K.; Baker, L. A.; Crooks, R. M.; George, M. z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film. J. Appl. Phys., 1999, 86, 6200-6205. (http://dx.doi.org/10.1063/1.371675)
4Garcia, M. E.; Baker, L. A.; Crooks, R. M. Preparation and Characterization of Dendrimer-Gold Colloid Nanocomposites. Anal. Chem., 1999, 71, 256-258. (http://dx.doi.org/10.1021/ac980588g)
3Hierlemann, A.; Campbell, J. K.; Baker, L. A.; Crooks, R. M.; Ricco, A. J. Structural Distortion of Dendrimers on Gold Surfaces: A Tapping Mode AFM Investigation. J. Am. Chem. Soc., 1998, 120, 5323-5324. (http://dx.doi.org/10.1021/ja974283f)
2Tokuhisa, H.; Zhao, M. Q.; Baker, L. A.; Phan, V. T.; Dermody, D. L.; Garcia, M. E.; Peez, R. F.; Crooks, R. M.; Mayer, T. M. Preparation and Characterization of Dendrimer Monolayers and Dendrimer-Alkanethiol Mixed Monolayers Adsorbed to Gold. J. Am. Chem. Soc., 1998, 120, 4492-4501. (http://dx.doi.org/10.1021/ja9742904)
1Baker, L. A.; Su, S. J. An ab initio Molecular Orbital Study of the Reaction NH2+NO → H2+N2O. Chem. Phys., 1998, 228, 9-16. (http://dx.doi.org/10.1016/S0301-0104(97)00319-4)
Book Chapters
5Alanis, K.; Alden, S.E.; Baker, L.A.; Shen, M. Micro and Nanopipettes for Electrochemical Imaging and Measurement, in Scanning Electrochemical Microscopy Third Edition; Mirkin, M.V., Bard, A.J., Eds.; CRC Press: Boca Raton, FL, 2021, submitted.
4Choi, M.; Leasor, C.W.; Baker. L.A. Analytical Applications of Scanning Ion Conductance Microscopy: Measuring Ions and Electrons, in: Bioanalytical Reviews. Scanning Ion Conductance Microscopy; Schäffer, T.E., Eds.; Springer Nature: Switzerland, 2021, (https://doi.org/10.1007/11663_2021_9)
3Saha-Shah, A.; Baker, L.A. Development of Pipettes as Mobile Nanofluidic Devices for Mass Spectrometric Analysis in: Open Space Microfluidics: Concepts, Implementation, Applications, Delamarche, E., Kaigala, G.V., Eds; Wiley, 2018, pp 273-292. (https://doi.org/10.1002/9783527696789.ch13)
2Weber, A. E.; Shi, W.; Baker, L.A. Electrochemical Applications of Scanning Ion Conductance Microscopy. In Electroanalytical Chemistry; Bard, A.J., Zoski, C. Eds.; 2015, 26, 75-114.
1Friedman, A.K.; Baker, L.A. Nanopores and Nanoporous Membranes, in Nanoelectrochemistry; Mirkin, M.V., Amemiya, S., Eds., CRC Press, 2015, 395-438. (http://dx.doi.org/10.1201/b18066-14)
Editorials, Commentaries and Miscellany
8Baker, L.A.; Cavinato, A.G. Teaching Analytical Chemistry in the time of COVID-19 (Invited Editorial) Anal. Chem. 2020, 92, 10185–10186. (https://doi.org/10.1021/acs.analchem.0c02981)
7Anand, R.; Baker, L. A.; Sun, L.; Zamborini, F. P.; Zhan, W. A Tribute to Richard M. Crooks on the Occasion of His 65th Birthday, ChemElectroChem, 2020, 7, 1062-1066. (https://doi.org/10.1002/celc.201901630)
6Long, Y.; Unwin, P.R.; Baker, L.A. Single-Entity Electrochemistry: Fundamentals and Applications (editorial), ChemElectroChem, 2018, 5, 2918-2919. (https://doi.org/10.1002/celc.201801169)
5Hou, J.; Baker, L.A.; Zhou, L.; Klein, R.S. Viral interactions with the blood-brain barrier: old dog, new tricks, Tissue Barriers, 2016, 4, e1142492. (http://dx.doi.org/10.1021/acs.analchem.5b03399)
4Zhou, L.; Zhou, Y.; Baker, L.A. Measuring Ions with Scanning Ion Conductance Microscopy. ECS Interface, 2014, 2, 51-56. (http://www.electrochem.org/dl/interface/sum/sum14/if_sum14.htm)
3Baker, L. A.; Chen, C. Waves in Microscopy. Nature Chem., 2011, 3, 191-192. (invited commentary) (http://dx.doi.org/ 10.1038/nchem.983)
2Baker, L. A.; Bird, S. P. A Makeover for Membranes. Nat. Nanotechnol., 2008, 3, 73-74 (invited commentary). (http://dx.doi.org/10.1038/nnano.2008.13)
1Martin, C. R.; Baker, L. A. Expanding the Molecular Electronics Toolbox. Science 2005, 309, 67-68 (invited commentary). (http://dx.doi.org/10.1126/science.1114663)
Patents
1Patent Application #15/752,386 USPTO Electrospray Imaging and Deposition
Close Bitnami banner
Bitnami